Department of
MATHEMATICS






Syllabus for
Bachelor of Science (Physics, Chemistry, Mathematics)
Academic Year  (2023)

 
3 Semester - 2022 - Batch
Paper Code
Paper
Hours Per
Week
Credits
Marks
AEN321 ADDITIONAL ENGLISH 3 3 100
CHE331 CHEMISTRY III-ORGANIC AND ANALYTICAL CHEMISTRY 4 4 100
CHE351 CHEMISTRY PRACTICALS - III 2 2 50
ENG321 ENGLISH-III 3 2 100
FRN321 FRENCH 3 3 100
HIN321 HINDI 3 3 100
KAN321 KANNADA 3 03 50
MAT331 REAL ANALYSIS 4 4 100
MAT351 PYTHON PROGRAMMING FOR MATHEMATICS 2 2 50
PHY331 THERMAL PHYSICS AND STATISTICAL MECHANICS 4 04 100
PHY351 THERMAL PHYSICS AND STATISTICAL MECHANICS LAB 2 02 50
SAN321 SANSKRIT 3 3 100
TAM321 TAMIL 3 3 100
4 Semester - 2022 - Batch
Paper Code
Paper
Hours Per
Week
Credits
Marks
AEN421 ADDITIONAL ENGLISH 3 3 100
CHE431 CHEMISTRY IV-INORGANIC AND PHYSICAL CHEMISTRY 4 4 100
CHE451 CHEMISTRY PRACTICALS - IV 2 2 50
ENG421 ENGLISH-IV 3 2 100
FRN421 FRENCH 3 3 100
HIN421 HINDI 3 3 100
KAN421 KANNADA 3 03 50
MAT431 ALGEBRA 4 4 100
MAT451 PYTHON PROGRAMMING FOR MATHEMATICAL MODELLING 2 2 50
PHY431 WAVES AND OPTICS 4 04 100
PHY451 WAVES AND OPTICS LAB 2 02 50
SAN421 SANSKRIT 3 3 100
TAM421 TAMIL 3 3 100
5 Semester - 2021 - Batch
Paper Code
Paper
Hours Per
Week
Credits
Marks
CHE531 CHEMISTRY V-PHYSICAL CHEMISTRY 3 03 100
CHE541A CHEMISTRY VA-ORGANIC CHEMISTRY 3 03 100
CHE541B CHEMISTRY VB-INORGANIC CHEMISTRY 3 3 100
CHE551 CHEMISTRY PRACTICALS V-PHYSICAL CHEMISTRY 2 02 50
CHE551A CHEMISTRY PRACTICALS VA-ORGANIC CHEMISTRY 2 02 50
CHE551B CHEMISTRY PRACTICALS VB-INORGANIC CHEMISTRY 2 2 50
MAT531 LINEAR ALGEBRA 3 3 100
MAT541A INTEGRAL TRANSFORMS 3 3 100
MAT541B MATHEMATICAL MODELLING 3 3 100
MAT541C GRAPH THEORY 3 3 100
MAT541D CALCULUS OF SEVERAL VARIABLES 3 3 100
MAT541E OPERATIONS RESEARCH 3 3 100
MAT551 LINEAR ALGEBRA USING PYTHON 2 2 50
MAT551A INTEGRAL TRANSFORMS USING PYTHON 2 2 50
MAT551B MATHEMATICAL MODELLING USING PYTHON 2 2 50
MAT551C GRAPH THEORY USING PYTHON 2 2 50
MAT551D CALCULUS OF SEVERAL VARIABLES USING PYTHON 2 2 50
MAT551E OPERATIONS RESEARCH USING PYTHON 2 2 50
PHY531 MODERN PHYSICS - I 3 3 100
PHY541A ANALOG AND DIGITAL ELECTRONICS 3 3 100
PHY541B RENEWABLE ENERGY AND APPLICATIONS 3 3 100
PHY541C ASTRONOMY AND ASTROPHYSICS 3 3 100
PHY551 MODERN PHYSICS - I LAB 2 2 50
PHY551A ANALOG AND DIGITAL ELECTRONICS LAB 2 2 50
PHY551B RENEWABLE ENERGY AND APPLICATIONS LAB 2 2 50
PHY551C ASTRONOMY AND ASTROPHYSICS LAB 2 2 50
VPHY512 MATERIAL CHARACTERIZATION TECHNIQUES 2 0 100
6 Semester - 2021 - Batch
Paper Code
Paper
Hours Per
Week
Credits
Marks
CHE631 CHEMISTRY VI-MOLECULES OF LIFE 3 3 100
CHE641A CHEMISTRY VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT 3 3 100
CHE641B CHEMISTRY VIB-CHEMISTRY OF NATURAL PRODUCTS AND HETEROCYCLIC COMPOUNDS 3 3 100
CHE651 CHEMISTRY PRACTICALS VI-MOLECULES OF LIFE 2 2 50
CHE651A CHEMISTRY PRACTICALS VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT 2 2 50
CHE651B CHEMISTRY PRACTICALS VIB-CHEMISTRY OF NATURAL PRODUCTS AND ORGANIC ANALYSIS 2 2 50
CHE681 DISSERTATION IN CHEMISTRY 7 5 100
MAT631 COMPLEX ANALYSIS 3 3 100
MAT641A MECHANICS 3 3 100
MAT641B NUMERICAL METHODS 3 3 100
MAT641C DISCRETE MATHEMATICS 3 3 100
MAT641D NUMBER THEORY 3 3 100
MAT641E FINANCIAL MATHEMATICS 3 3 100
MAT651 COMPLEX ANALYSIS USING PYTHON 2 2 50
MAT651A MECHANICS USING PYTHON 2 2 50
MAT651B NUMERICAL METHODS USING PYTHON 2 2 50
MAT651C DISCRETE MATHEMATICS USING PYTHON 2 2 50
MAT651D NUMBER THEORY USING PYTHON 2 2 50
MAT651E FINANCIAL MATHEMATICS USING EXCEL AND PYTHON 2 2 50
MAT681 PROJECT ON MATHEMATICAL MODELS 5 5 150
PHY631 MODERN PHYSICS - II 3 3 100
PHY641A SOLID STATE PHYSICS 3 03 100
PHY641B QUANTUM MECHANICS 3 3 100
PHY641C NUCLEAR AND PARTICLE PHYSICS 3 3 100
PHY651 MODERN PHYSICS - II LAB 2 2 50
PHY651A SOLID STATE PHYSICS LAB 2 02 50
PHY651B QUANTUM MECHANICS LAB 2 2 50
PHY651C NUCLEAR AND PARTICLE PHYSICS LAB 2 2 50
VPHY611 MATHEMATICAL TOOLS IN PHYSICS 2 0 100

AEN321 - ADDITIONAL ENGLISH (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description

 

This course is taught in the second year for students from different streams, namely BA, BSc

 

and BCom. If the first year syllabus is an attempt by the Department of English, Christ

 

University to recognize and bring together the polyphonic Indian voices in English and Indian

 

regional literatures in translation for the Additional English students of the first year, the

 

second year syllabus intends to take that project a little further and open up the engagement

 

of the students to texts from across the world. The syllabus - selection of texts will

 

concentrate on readings from South Asian, Latin American, Australian, Canadian, and Afro-

 

American. It will voice subaltern concerns of identity, gender, race, ethnicity and problems of

 

belongingness experienced by humanity all over the globe.

 

The syllabus will extend the concerns of nation and nationality and marginalization,

 

discussed within the Indian context to a more inclusive and wider global platform. We have

 

consciously kept out ‘mainstream’ writers and concentrated on the voices of the subalterns

 

from across the world. There is an implicit recognition in this project that though the aspects

 

of marginalization and the problems facing subalterns are present across cultures and

 

nations, the experiences, expressions and reflections are specific to each race and culture.

 

The course will address these nuances and specificities and enable our students to become

 

more aware and sensitive to life and reality around them. This will equip the students, who

 

are global citizens, to understand not just the Indian scenario, but also situate themselves

 

within the wider global contexts and understand the spaces they will move into and negotiate

 

in their future.

 

There is a prescribed text book Blends: Voices from Margins for the second year students,

 

compiled by the Department of English, Christ University and intended for private circulation.

Course Objectives

 

The course objectives are

 

 to enable students to look at different cultures through Literature

 

 to help students develop an understanding of subaltern realities and identity politics

 

 to inculcate literary sensibility/taste among students across disciplines

 

 to improve language skills –speaking, reading, writing and listening

 

 to equip the students with tools for developing lateral thinking

 

 to equip students with critical reading and thinking habits

 

 to reiterate the study skills and communication skills they developed in the previous

 

year and extend it.

Learning Outcome

CO1: it will enable students to understand and analyse the nuances of cultures, ethnicities and other diversity around them and become sensitive towards them.

CO2 : They will be able to critique literature from a cultural, ethical, social and political perspectives

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE331 - CHEMISTRY III-ORGANIC AND ANALYTICAL CHEMISTRY (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course deals with the concepts of organic and analytical chemistry and builds the foundation for more advanced topics in the subsequent courses.

Learning Outcome

CO 1: Summarise the fundamental aspects of organic molecules and their interactions.

CO 2: Justify the chemicals and reactions based on the green chemistry approach.

CO 3: Discuss the principles of analytical chemistry techniques and apply them in real sample analysis.

CO 4: Relate theory of separation techniques and instrumental methods for analysis.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE351 - CHEMISTRY PRACTICALS - III (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course is intended to provide basic skills in qualitative analysis at the semi micro scale. Identification of cations and anions present in inorganic compounds has to be performed. Separation of sugar and amino acid mixtures can be achieved through chromatography.

 

 

 

Learning Outcome

CO 1: Analyse inorganic salt mixtures.

CO 2: Discuss the separation of amino acid mixtures and sugar mixtures using chromatographic techniques.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

ENG321 - ENGLISH-III (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:2

Course Objectives/Course Description

 

 

Course Description

English is offered as a course for all the students in BA, BSc, BCom, and BBA F&A classes in the third and fourth semesters. The aim is to strengthen the communication skills, and particularly study skills of the learners further, through adequate practice and exposure to good examples of writing, thought, ideas and human values. In addition, they will be trained in study skills through tasks in academic genres such as message, letter, essay, data interpretation etc. It aims to not only equip learners with skills but also sensitize them towards issues that concern human life in today’s globalised context. The course content is selected to meet the requirements of the departmental goal of “empowering the individual to read oneself, the social context and the imagined”; institutional goal of ensuring “holistic development”; and the national goal of creating competent and valuable citizens. The primary objective of this course is to help learners develop appropriate employability skills and demonstrate suitable conduct with regards to communication skills. The units are organised in order to help the learners understand the academic and workplace demands and learn by practice.

 

Course Objectives     

 

 

·       To enable learners to develop reading comprehension for various purposes

 

·       To enable learners to develop writing skills for academic and professional needs

 

·       To enable learners to develop the ability to think critically and express logically

 

·       To enable learner to communicate in a socially and ethically acceptable manner

 

·       To enable learners, to read, write and speak with clarity, precision and accuracy

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning Outcome

CO1: Recognise the errors of usage and correct them. Recognize their own ability to improve their own competence in using the language

CO2: Read independently unfamiliar texts with comprehension. Read longer texts, compare, and evaluate them.

CO3: Understand the importance of writing in academic life. Write simple sentences without committing errors in spelling and grammar. Plan a piece of writing using drafting techniques.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

FRN321 - FRENCH (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

French as second language for the Arts, Science and Commerce UG program

Learning Outcome

CO1: Ability to communicate with native speakers and make presentations on small topics

CO 2: Proficiency in literary analysis, appreciation and review of poems,play ,films and fables

CO3: Acquaintance of culture, civilization, social values and etiquettes, and gastronomical richness

CO 4: Ability to do formal and informal, oral and written communication.

CO 5: Overall knowledge on functional and communicative aspects and get through a2 level exams.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

HIN321 - HINDI (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

 

Course Description:

The detailed text book “Shambook” is a Khanda Kavya written by Jagdeesh Gupta. To improve the creative writing skills, Nibandh, Kahani and Kavitha lekhan are included.Bharathiya chitrakala is also a part of the syllabus to improve the knowledge aboutIndian paintings.

Course Objectives:

Students are exposed to different forms of poetry especially, Khanda Kavya. It will help them to understand the contemporary socio-political issues.By learning about the tradition of Indian painting and legendary painters of India , students get to know about the richness and culture  of the Indian paintings. Creative writing sharpens their thinking, analytical  and writing skills 

Learning Outcome

CO1: By the end of the course the student should be able to: ● CO1: Improve their writing skill in literary Hindi by doing asynchronous session assignments and CIAs. ● CO2: Improve their analytical skills through critical analysis of the poetry. ● CO3: Will be able to learn the different aspects of Official correspondence. ● CO4: To improve their basic research skills while doing the CIAs. By the end of the course the student should be able to: ● CO1: Improve their writing skill in literary Hindi by doing assignments and CIAs

CO2: Improve their analytical skills through critical analysis of the poetry.

CO3: To improve their basic research skills while doing the CIAs

CO4: To understand the contributions of painters to Indian painting.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

KAN321 - KANNADA (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:50
Credits:03

Course Objectives/Course Description

 

Course Description: Language Kannada is offered to students of third Semester BA/B.Sc as Second language for fifty marks. Students of this semester will study an anthology of Modern Kannada Poetry and an Autobiography of Laxman Gaikwad. This course prepares the students to understand the new era. At the dawn of the twentieth century, B.M. Srikantiah, regarded as the “Father of modern Kannada Literature”, called for a new era of writing original works in modern Kannada while moving away from archaic Kannada forms. Students will study modern Kannada poetry from B.M.Sri to Dalit poet Dr. Siddalingiah. An anthology of modern poetry is selected to understand the beauty of modern Kannada poets through their writings. Uchalya is an autobiographical novel that carries the memories of Laxman Gaikwad right from his childhood till he became an adult. Laxman Gaikwad took birth in a criminal tribe of India belonging to Orissa/ Maharastra. The original text is translated to Kannada by Chandrakantha Pokale.

 

Course Objectives:

Understand and appreciate poetry as a literary art form.

Analyse the various elements of Poetry, such as diction, tone, form, genre, imagery, symbolism, theme, etc.

Appreciates to  learn the elements of autobiography.

Learning Outcome

CO 1: Able to define autobiography

CO2: Outline a personal autobiography

CO3: Delineate different types of autobiography

CO 4: Proficiency in communication skills

CO5 : Understand the principles of translation

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT331 - REAL ANALYSIS (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course description : This course enables the students to understand the basic techniques and theories of real Analysis.

 

Course objectives : This course will help the learner to

COBJ1. examine the convergence or divergence of sequences and series.

COBJ2. understand the different types of convergence and their properties.

 

Learning Outcome

Course outcomes : On successful completion of the course, the students should be able to

CO1. Quote and understand the definition of a limit of a sequence or a function in its various forms.

CO2. Demonstrate the convergence or divergence of the geometric and harmonic series and other standard series.

CO3. Apply the basic tests for convergence of infinite series.

CO4. Prove the tests for convergence: Comparison Test, Ratio Test, Cauchy’s Root test, Raabe’s Test, alternating series test etc.

CO5. Understand the differences between convergence and absolute convergence

CO6. Understand and solve binomial , logarithmic and exponential series

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT351 - PYTHON PROGRAMMING FOR MATHEMATICS (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: The course Python programming for Mathematics is aimed at enabling the students to appreciate and understand some concepts in mathematics like Matrices, sequences, series, geometric shapes and fractals with the help of Python programming language. It is designed with a learner-centric approach wherein the students will acquire mastery in the subject by using Python programing language as tool.

Course objectives: This course will help the learner to

COBJ1. Acquire programming skill in solving mathematical problems using Python

Learning Outcome

CO1: demonstrate the use of Python to understand and interpret the concepts in sequences and series.

CO2: apply Python to finding the area of the curve.

CO3: acquire proficiency in using Python to find out the inverse determinant, transpose, Eigen values of a Matrix.

CO4: visualize shapes and Fractals

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY331 - THERMAL PHYSICS AND STATISTICAL MECHANICS (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:04

Course Objectives/Course Description

 

This course on thermal physics and statistical mechanics enables the students to understand the fundamentals of thermodynamics, laws of thermodynamics, thermodynamic potentials, kinetic theory of gases and statistical mechanics.

Learning Outcome

CO1: Understand the theory and methods of statistical physics and thermodynamics

CO2: Explain the procedures for deriving the relation between thermodynamic parameters such as pressure, temperature, entropy and heat capacity from the distribution functions

CO3: Apply the methods of statistical physics in other fields of physics and related fields.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY351 - THERMAL PHYSICS AND STATISTICAL MECHANICS LAB (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:02

Course Objectives/Course Description

 

 

 

The experiments related to thermodynamics and statistical mechanics included in this course provides a thorough understanding of the theory and expose the students to the method of detailed analysis and inferences.

 

 

Learning Outcome

CO1: Better clarity in the basic principles of thermal physics, thermodynamics and Statistical mechanics through the respective experiments and development of problem solving and practical application skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

SAN321 - SANSKRIT (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Sundara Kanda is the only chapter of the Ramayana in which the hero is not Rama, but rather Hanuman. The work depicts the adventures of Hanuman and his selflessness, strength, and devotion to Rama are emphasized in the text. Bhoja only wrote 5 kāṇdas (up to the Sundarakāṇda), and there is a story about this: that he was inspired to write this work the night before a battle, that as he finished the Sundarakāṇda it was time to go, and that he announced that the Yuddhakāṇda would be enacted in the battlefield against the invader, but sadly he never returned. Others have composed a Yuddhakāṇda to complete the work.

The main objective of the students is to understand the champu Kavyas based on the sam.  

The Origin and development of the Champu.

Learning Outcome

CO1: To analyse the content of the text in detail with examples

CO2: To Deliberate the classification and characters of the epic

CO3: To understand the delight of the text.

CO4: To demonstrate an increased ability to read and understand Sanskrit texts

CO5: To understand the prefixes and suffixes and changing the sentences in grammar.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

TAM321 - TAMIL (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Araillakiyam, bakthi illakiyam, ikala illakiyamn the major allakiyams.The influence myths and puranas are delineated through the good deeds for a better lifestyle.The  Cultural Studies part will have an overview of Indian painting both traditional and modern with special reference to mythology and literature

India 2020- Abdul Kalam

 

 

Learning Outcome

CO1: Recall and categorize the concepts of literature.

CO2: Understand the true essence of the texts, and inculcate them in their daily lives.

CO3: Recognize and apply the moral values and ethics in their learning.

CO4: Comprehend the concepts in literature and appreciate the literary text.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

AEN421 - ADDITIONAL ENGLISH (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course is taught in the second year for students from different streams, namely BA, BSc and B Com. If the first year syllabus is an attempt by the Department of English, Christ University to recognize and bring together the polyphonic Indian voices in English and Indian regional literatures in translation for the Additional English students of the first year, the second year syllabus intends to take that project a little further and open up the engagement of the students to texts from across the world. The syllabus - selection of texts will concentrate on readings from South Asian, Latin American, Australian, Canadian, and Afro-American. It will voice subaltern concerns of identity, gender, race, ethnicity and problems of belongingness experienced by humanity all over the globe.

The syllabus will extend the concerns of nation and nationality and marginalization, discussed within the Indian context to a more inclusive and wider global platform. We have consciously kept out ‘mainstream’ writers and concentrated on the voices of the subalterns from across the world. There is an implicit recognition in this project that though the aspects of marginalization and the problems facing subalterns are present across cultures and nations, the experiences, expressions and reflections are specific to each race and culture. The course will address these nuances and specificities and enable our students to become more aware and sensitive to life and reality around them. This will equip the students, who are global citizens, to understand not just the Indian scenario, but also situate themselves within the wider global contexts and understand the spaces they will move into and negotiate in their future.

 

There is a prescribed text book Blends: Voices from Margins for the second year students, compiled by the Department of English, Christ University and intended for private circulation. 

The course objectives are

·         to introduce the students to look at different cultures through Literature

·         to help students develop an understanding of subaltern realities and identity politics

·         to inculcate literary sensibility/taste among students across disciplines

·         to improve language skills –speaking, reading, writing and listening

·         to equip the students with tools for developing lateral thinking

·         to equip students with critical reading and thinking habits

·         to enable them to grasp and appreciate the variety and abundance of subaltern writing, of which this compilation is just a glimpse 

·         to actively engage with the world as a cultural and social space (to be facilitated through proactive CIAs which help students to interact and engage with the realities they face everyday and have come across in these texts)

·         to learn and appreciate India and its place in the world through association of ideas in the texts and the external contexts

 

·         to reiterate the study skills and communication skills they developed in the previous year and extend it.  

Learning Outcome

CO1 : CO1: To understand the socio- political concerns in various literatures through short stories, poems and essays

CO2: CO2: To critically read and articulate the non- canonised literatures

CO3: CO3: To analyse and apply these textual themes in a multi- cultural, global and professional space

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE431 - CHEMISTRY IV-INORGANIC AND PHYSICAL CHEMISTRY (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

This course deals with the chemistry of transition elements and the fundamentals of coordination chemistry. In this course also covers studies on gaseous state, liquid state and crystallography.

 

 

Learning Outcome

CO 1: Compare the properties of transition elements and bonding in metal complexes.

CO 2: Correlate the properties of various phase systems and binary liquid mixtures with their applications.

CO 3: Illustrate the structure, bonding, properties and mechanisms of coordination complexes using appropriate theories.

CO 4: Discuss the various theories of gases, symmetry, and structural aspects of crystals.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE451 - CHEMISTRY PRACTICALS - IV (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Principles of physical chemistry studied by the students in the theory classes get reinforced. This course introduces the students to various experiments on electrochemistry, ionic equilibria and thermometry. It emphasizes the importance of organized and systematic approach in carrying out experiments.

 

Learning Outcome

CO1: Analyze the phase changes occurring due to change in temperature and concentration of a sample mixture.

CO2: Evaluate the pH, conductance and potential of the compounds and BOD and COD of water samples.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

ENG421 - ENGLISH-IV (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:2

Course Objectives/Course Description

 

 

This syllabus is meant to cater to all the three streams- B.A., B.Sc.and B.Com therefore the selection of units, has been done keeping in mind the general needs of students from these different backgrounds. Topics of universal concern, appeal and relevance have been included to sustain the interests of all students.

 

The selection of topics also progresses in complexity with each semester, enabling the students to gradually progress into more serious and sustained patterns of reading and become increasingly perceptive and conscious of their own selves and the world they see around them.In a nutshell we aim to bring out a text that will empower the holistic development of every student. 

 

 

 

In addition, the selection of topicsis also heavily based on skill sets identified to be taught. Topics are carefully chosen to integrate appropriate language and communication skills among students. The specific focus of these two semesters is to build employability skills among them and to this effect, we have career advancement skills and employability skills based units. The learners will be exposed to various skill sets required to be able to handle various requirements both in their academic and workplaces.

 

 

Course Objectives:   

 

·       To enable learners to develop reading comprehension for various purposes

 

·       To enable learners to develop writing skills for academic and professional needs

 

·       To enable learners to develop the ability to think critically and express logically

 

·       To enable learner to communicate in a socially and ethically acceptable manner

 

·       To enable learners, to read, write and speak with clarity, precision and accuracy

 

 

Learning Outcome

CO1: Ability to judge audience requirements in oral and written communication and communicate accordingly.

CO2: Ability to use specific styles in communication and understand workplace structures and requirements to communicate

CO3: Lead and participate in seminars and group discussions more effectively and with increased confidence.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

FRN421 - FRENCH (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

French as a second language in the UG program. The method Génération A2 consists of a student's book and an activity book, both included in the digital manual. It consists of 6 units preceded by an initial section of 'Welcome'. Continuing from where A1 left, it aims to enhance learning skills further. The structure of each unit marks a real learning journey into different aspects of the French language and culture.

 

Course Objectives

·       To develop linguistic competencies and sharpen oral and written communicative skills further

·       To enhance awareness of different aspects of francophone civilization.

·       To enrich the learner’s vocabulary

·       To enable learners to engage in and discuss simple topics with ease

 

Learning Outcome

CO1: To familiarize students with the French culture and traditions.

CO 2: To equip students with correct grammar, vocabulary and pronunciation.

CO3: To enhance communicative skills.

CO 4: To make them well versed in all the four language skills.

CO5: To make them ready for A2 level Exams.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

HIN421 - HINDI (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description:

The detailed text-book "Ashad ka ek din” is a drama by Mohan Rakeshi, one of the eminent writers of modern Hindi Literature. Hindi journalismis is one of the major unit of this semester. Phrases, idioms, technical and scientific terminology are included in this semester to improve the literary skills.

Course Objectives:

Through the prescribed play and the theatre performance, students can go through the process of experiential learning. Study of Mass media enables them to get practical training. Phrases, idioms, technical and scientific terminology sharpen the language skills of the students.  

 

Learning Outcome

CO1 : Understand the nuances of Hindi theatre.

CO2: Create awareness of the social issues.

CO3: Improve the skill of critical analysis.

CO4: Develop the writing skills for media.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

KAN421 - KANNADA (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:50
Credits:03

Course Objectives/Course Description

 

The course introduces the rich Kannada language and helps students to read and write the Regional language effectively. The prescribed text ‘Kalagnani Kanaka’ (Kanaka, the visionary) is all about 15th century poet, saint and philosopher of the Haridasa Bhakti tradition. “Kanaka’s writings touch on all aspects of truth and social reality’ said K.R. Nagaraj, literary critic and the author of the Kalagnani Kanaka play. “Kanaka’s poetry is dense with rhyme, rhythm, meter and rich descriptions. He upholds social justice while addressing the issues of the time-caste and class differentiation and gender oppression, for example. Contrary to popular belief, he never confined himself to any one philosophical tradition- Advaita, Dwaita or Vishistadwaitha” ‘Kannadada Moovattu Kathegalu’ is another prescribed text. Through this text the students are exposed to the writings of Koradkal Sreenivasa Rao, K. P. Poornachandra Tejaswi, Masti Venkatesha Iyengar, G. P. Basavaraj and others. Short stories help students in harnessing creative writing skills.

Learning Outcome

CO1: Reflects the tradition of old & the new

CO2: Helps to create dialogue writing

CO3: Identify key points in stories

CO4: Understand the ideologies during British rule

CO5: Expose to Dasa Sahitya movement

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT431 - ALGEBRA (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:4

Course Objectives/Course Description

 

Course description : This course aims at developing the ability to write the mathematical proofs.  It helps the students to understand and appreciate the beauty of the abstract nature of mathematics and also to develop a solid foundation of theoretical mathematics.

Course objectives : This course will help the learner to

COBJ1. Understand the fundamentals of groups and its theories.

COBJ2. Relate abstract algebraic constructs to more familiar sets and operators

COBJ3. Know about the subgroups and group homomorphisms

COBJ4. Get familiar with the theories on rings, integral domains and fields.

Learning Outcome

CO1: Describe and generate groups, rings and fields.

CO2: Identify and differentiate different structures and understand how changing properties give rise to new structures.

CO3: Demonstrate the knowledge of concepts of rings and fields.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT451 - PYTHON PROGRAMMING FOR MATHEMATICAL MODELLING (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: The course Python programming for mathematical modelling is aimed at enabling the students study the implementation of Python programming for solving some real world problems. It is designed with a learner-centric approach wherein the students will acquire mastery in the modelling and simulation by using Python programming language as a tool.

Course objectives: This course will help the learner to

COBJ1. Acquire proficiency in using Python to present data grapically

COBJ2. Solving differential equations analytically and numerically using Python.

COBJ3. Acquire skills to solve various Mathematical models- exponential growth, Logistic growth, simple pendulum and spreading of disease.

Learning Outcome

CO1: Solve differential equations governed by mathematical models using Python.

CO2: Demonstrate the use of Python to interpret and analyze the data.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY431 - WAVES AND OPTICS (2022 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:4
Max Marks:100
Credits:04

Course Objectives/Course Description

 

This course on waves and optics enables the students to understand the fundamentals of simple harmonic motion and wave motion, theoretical explanation of the phenomenon of interference, diffraction and polarization.

Learning Outcome

CO1: Solve problems related to damped, undamped and forced vibrations.

CO2: Understand and conceptualize the Simple harmonic motion and its applications.

CO3: Analyze the damped vibrations, undamped vibrations and forced vibrations

CO4: Apply the concepts of sound waves and relate the particle velocity, group velocity and phase velocity.

CO5: Evaluate the problems related to damped, undamped and forced vibrations.

CO6: Clarity in the basic principles of interference, diffraction, polarization etc and development of problem solving and application skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY451 - WAVES AND OPTICS LAB (2022 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:02

Course Objectives/Course Description

 

The experiments related to waves and optics included in this course provides a thorough understanding of the theory and expose the students to the method of detailed analysis and inferences.

Learning Outcome

CO1: Better clarity in the basic principles of oscillations, waves, interference, diffraction, polarization of light through the respective experiments and development of problem solving and practical application skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

SAN421 - SANSKRIT (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Avimarakam by Bhasa is the drama  prescribed as a text and approved in the B.O.S.  It is sociological drama which explains about the society.  . This drama is an imaginary composition of Bhasa . The concept and drama skills expresses the beauty of the style of the author Bhasa.  He creates the characters and the incidents are naturally created. Grammar will also be studied.

Learning Outcome

CO1: To Understand the style and development of the play

CO2: To learn the linguistic skills of the drama.

CO3: To Deliberate the classification and characteristics of the play

CO4: To Understand the features of play

CO5: To understand the basic structural nuances of Panini?s grammar

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

TAM421 - TAMIL (2022 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

A new concept, cultural studies, will take the students beyond prescribed syllabus to include music, theatre, painting, and films out of which the art form of music is taken up for the first semester.  Aram poetry- Ara nericharam specifies life discipline and standards, which would pave a successful life for the students. 

Bhakthi ilakiya- them bhavani, cheerapuranam, thirumandiram is inclined towards ritual practices. Kaapiyam with its historical values provides an understanding about life in a mature way.



Learning Outcome

CO1: Recall and categorize the concepts of literature.

CO2: Understand the true essence of the texts, and inculcate them in their daily lives.

CO3: Recognize and apply the moral values and ethics in their learning.

CO4: Comprehend the concepts in literature and appreciate the literary text.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE531 - CHEMISTRY V-PHYSICAL CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:03

Course Objectives/Course Description

 

Course Description:

This course includes important physical topics that describe the influence of electricity and electromagnetic radiation on matter.  Ionic equilibria and Electrochemistry relate to the formation of ions and their ability to migrate under the influence of electricity.   Spectroscopy and Photochemistry are the topics that discuss the interaction of radiation with matter and are the foundation for many analytical techniques today. 

 

 

Learning Outcome

CO1: Explain the concepts of ionic equilibria, electrochemistry, spectroscopy, and photochemistry

CO2: Interpret the spectroscopic responses of organic and inorganic molecules.

CO3: Solve problems based on ionic equilibria, electrochemistry, and photochemistry.

CO4: Discuss the kinetics of photochemical reactions.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE541A - CHEMISTRY VA-ORGANIC CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:03

Course Objectives/Course Description

 

Course Description: This course deals with various topics of determining reaction mechanisms, spectroscopy, the chemistry of soaps, detergents and dyes. This course on stereochemistry intends to make the students understand different concepts of conformational analysis and optical isomerism.

Learning Outcome

CO1: CO1-Illustrate the stereochemistry of organic molecules, the chemistry of soaps, detergents and dyes.

CO2: CO2-Explain the concepts related to research methodologies and research publications.

CO3: CO3-Analyse the organic compounds using spectroscopic techniques.

CO4: CO4- Interpret the reaction mechanisms.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE541B - CHEMISTRY VB-INORGANIC CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course will introduce the students to concepts and applications of bioinorganic chemistry, nanomaterials, organometallic chemistry, industrial catalysis, inorganic polymers, metal clusters, sustainability, and climate change.

Learning Outcome

CO1: Explain concepts of bioinorganic chemistry

CO2: Predict the bonding and structure of organometallic compounds.

CO3: Perceive the concept of nuclear chemistry and acid-bases.

CO4: Illustrate the concepts of sustainability, climate change and research methodology.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE551 - CHEMISTRY PRACTICALS V-PHYSICAL CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:02

Course Objectives/Course Description

 

 

Course Description:This course introduces the students to various experiments on electrochemistry, chemical kinetics and thermometry. It also emphasizes the importance of organized and systematic approach in carrying out experiments.

Learning Outcome

CO1: Estimate the important parameters pertaining to electrochemistry, ionic equilibria and spectroscopy.

CO2: Evaluate the conductance and potential difference exhibited by the compounds using conductometric and potentiometric methods applying them for various quantitative analysis.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE551A - CHEMISTRY PRACTICALS VA-ORGANIC CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:02

Course Objectives/Course Description

 

Course Description: This course introduces the students to the preparation and purification techniques of organic compounds.  Systematic analysis of organic compounds is also included. It also emphasizes the importance of organized and systematic approach in carrying out experiments. 

Learning Outcome

CO1:: Design organic reactions for various synthetic transformations.

CO2:: Analyse organic compounds quantitatively and interpret spectroscopic characterisation of organic compounds.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE551B - CHEMISTRY PRACTICALS VB-INORGANIC CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:60
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This practical course consists of experiments that are designed to reinforce the learning of the theory course Novel Inorganic Solids. Experiments are either based on Preparation of materials or estimation of samples.

Learning Outcome

CO1: Explain concepts of bioinorganic chemistry

CO2: Predict the bonding and structure of organometallic compounds.

CO3: Perceive the concept of nuclear chemistry and acid-bases.

CO4: Illustrate the concepts of sustainability, climate change and research methodology.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT531 - LINEAR ALGEBRA (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course aims at developing the ability to write the mathematical proofs. It helps the students to understand and appreciate the beauty of the abstract nature of mathematics and also to develop a solid foundation of theoretical mathematics.

Course Objectives : This course will help the learner to

COBJ1. understand the theory of matrices, concepts in vector spaces and Linear Transformations.

COBJ2. gain problems solving skills in solving systems of equations using matrices, finding eigenvalues and eigenvectors, vector spaces and linear transformations.

Learning Outcome

CO1: use properties of matrices to solve systems of equations and explore eigenvectors and eigenvalues.

CO2: understand the concepts of vector space, basis, dimension, and their properties.

CO3: analyse the linear transformations in terms of matrices.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT541A - INTEGRAL TRANSFORMS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course aims at providing a solid foundation upon the fundamental theories on Fourier and Laplace transforms.

Learning Outcome

CO1: Evaluate integrals by using Fourier series and Fourier integrals.

CO2: Apply Fourier sine and cosine transforms for various functions.

CO3: Derive Laplace transforms of different types of functions.

CO4: Utilize the properties of Laplace transforms in solving ordinary differential equations.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT541B - MATHEMATICAL MODELLING (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course is concerned with the fundamentals of mathematical modeling. It deals with finding solution to real world problems by transforming into mathematical models using differential equations. The coverage includes mathematical modeling through first order, second order and system of ordinary differential equations.

 

This course will help the learner to

COBJ1.  interpret the real-world problems in the form of first and second order differential equations. 

COBJ2.  familiarize with some classical linear and nonlinear models. 

COBJ3.  analyse the solutions of systems of differential equations by phase portrait method.

Learning Outcome

CO1: Apply differential equations in other branches of sciences, commerce, medicine and others

CO2: Understand the formulation of some classical mathematical models.

CO3: Demonstrate competence with a wide variety of mathematical tools and techniques.

CO4: Build mathematical models of real-world problems.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT541C - GRAPH THEORY (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description:This course is an introductory course to the basic concepts of Graph Theory. This includes definition of graphs, types of graphs, paths and circuits, trees, shortest paths and algorithms to find shortest paths.

Course objectives: This course will help the learner to

COBJ 1: Gain conceptual knowledge on terminologies used in graph theory.

 

COBJ 2: Understand the results on graphs and their properties.

COBJ 3: Gain proof writing and algorithm writing skills.

Learning Outcome

CO1: understand the terminology related to graphs

CO2: analyze the characteristics of graphs by using standard results on graphs

CO3: apply proof techniques and write algorithms

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT541D - CALCULUS OF SEVERAL VARIABLES (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description: This course aims to enlighten students with the fundamental concepts of vectors, geometry of space, partial differentiation and vector analysis such as gradient, divergence, curl, and the evaluation of line, surface and volume integrals. The three classical theorems, viz., Green’s theorem, Gauss divergence theorem and the Stoke’s theorem are also covered.

Course objectives​: This course will help the learner to

COBJ1. Gain familiarity with the fundamental concepts of vectors geometry of space.

COBJ2. Understand  differential and integral calculus of vector fields.

COBJ3. Demonstrate an understanding of and be able to use Green’s Theorem for the plane, Stokes Theorem, and Gauss’ divergence Theorem to simplify and solve appropriate integrals.

Learning Outcome

CO1: Solve problems involving vector operations.

CO2: Understand the TNB frame work and derive Serret-Frenet formula.

CO3: Compute double integrals and be familiar with change of order of integration.

CO4: Understand the concept of line integrals for vector valued functions.

CO5: Apply Green's Theorem, Divergence Theorem and Stoke's Theorem.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT541E - OPERATIONS RESEARCH (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims at teaching solution techniques of solving linear programming models, simple queuing model, two-person zero sum games and Network models.

Course objectives: This course will help the learner to

COBJ1. gain an insight executing the algorithms for solving linear programming problems including transportation and assignment problems.

COBJ2. learn about the techniques involved in solving the two person zero sum game.

COBJ3. calculate the estimates that characteristics the queues and perform desired analysis on a network.

Learning Outcome

CO1: On successful completion of the course, the students should be able to solve Linear Programming Problems using Simplex Algorithm, Transportation and Assignment Problems.

CO2: On successful completion of the course, the students should be able to find the estimates that characterizes different types of Queuing Models.

CO3: On successful completion of the course, the students should be able to obtain the solution for two person zero sum games using Linear Programming.

CO4: On successful completion of the course, the students should be able to formulate Maximal Flow Model using Linear Programming and perform computations using PERT and CPM.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551 - LINEAR ALGEBRA USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions vector space, linear independence, linear dependence, linear transformation and rank.

Course objectives: This course will help the learner to

COBJ1. The built in functions required to deal with vectors and Linear Transformations.

COBJ2. Python skills to handle vectors using the properties of vector spaces and linear transformations

Learning Outcome

CO1: Use Python functions in applying the notions of matrices and system of equations.

CO2: Use Python functions in applying the problems on vector space.

CO3: Apply python functions to solve the problems on linear transformations.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551A - INTEGRAL TRANSFORMS USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course will help students to gain skills in using Python to illustrate Fourier transforms, Laplace transforms for some standard functions and implementing Laplace transforms in solving ordinary differential equations of first and second order with constant coefficient.

Course Objectives​: This course will help the learner to

COBJ 1:code python language using jupyter interface.

COBJ 2:use built in functions required to deal with Fourier and Laplace transforms.

COBJ 3:  calculate Inverse Laplace transforms and the inverse Fourier transforms of standard functions using sympy.integrals

Learning Outcome

CO1.: Acquire skill in Python Programming to illustrate Fourier series, Fourier and Laplace transforms.

CO2.: Use Python program to solve ODE?s by Laplace transforms.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551B - MATHEMATICAL MODELLING USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: This course provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary differential equations (ODEs) using Python programming.

Course objectives:

COBJ1. The course exposes students to various models spanning disciplines such as physics, biology, engineering, and finance.

COBJ2. They will be able to develop a basic understanding of differential equations and skills to implement numerical algorithms to solve mathematical problems using Python.

Learning Outcome

CO1: Acquire proficiency in using Python.

CO2: Demonstrate the use of Python to understand and interpret applications of differential equations

CO3: Apply the theoretical and practical knowledge to real life situations.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551C - GRAPH THEORY USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: The course graph theory using Python is aimed at enabling the students to appreciate and understand core concepts of graph theory with the help of technological tools. It is designed with a learner-centric approach wherein the students will understand the concepts of graph theory using programming tools and develop computational skills.

Course objectives: This course will help the learner to

COBJ1. Gain familiarity in Python language using jupyter interface and NetworkX package

COBJ2. Construct graphs and analyze their structural properties.

COBJ3. Implement standard algorithms for shortest paths, minimal spanning trees and graph searching..

Learning Outcome

CO1: construct graphs using related matrices

CO2: compute the graph parameters related to degrees and distances

CO3: gain mastery to deal with optimization problems related to networks

CO4: apply algorithmic approach in solving graph theory problems

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551D - CALCULUS OF SEVERAL VARIABLES USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: The course calculus of several variables using python is aimed at enabling the students to explore and study the calculus with several variables in a detailed manner with the help of the mathematical packages available in Python. This course is designed with a learner-centric approach wherein the students will acquire mastery in understanding multivariate calculus using Python modules.

Course objectives: This course will help the learner to gain a familiarity with

COBJ1. Skills to implement Python language in calculus of several variables

COBJ2. The built-in functions available in library to deal with problems in multivariate calculus

Learning Outcome

CO1: Demonstrate plotting of lines in two and three dimensional space

CO2: implementing appropriate codes for finding tangent vector and gradient vector

CO3: Evaluate line and double integrals using sympy module

CO4: Acquainting suitable commands for problems in applications of line and double integrals.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT551E - OPERATIONS RESEARCH USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: Operations research deals with the problems on optimization or decision making that are affected by certain constraints / restrictions in the environment. This course aims to enhance programming skills in Python to solve problems chosen from Operations Research.

 

Course objectives: This course will help the learner to

COBJ1. gain a familiarity in using Python to solve linear programming problems, calculate the estimates that characteristics the queues and perform desired analysis on a network.

COBJ2. use Python for solving problems on Operations Research.

Learning Outcome

CO1: On successful completion of the course, the students should be able to use Python programming to solve linear programming problems by using simplex method and dual simplex method.

CO2: On successful completion of the course, the students should be able to solve Transportation Problems and Assignment Problems using Python module.

CO3: On successful completion of the course, the students should be able to demonstrate competence in using Python modules to solve M/M/1, M/M/c queues, and Computations on Networks.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY531 - MODERN PHYSICS - I (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

The course discusses the failure of classical mechanics, the origin of wave mechanics, and quantum mechanics in detail. It also discusses the structure of atoms given by various atomic models.

Learning Outcome

CO1: Understand that classical mechanics will not be sufficient to explain the spectrum of black bodies, the photoelectric effect, etc., and the need for quantum mechanics.

CO2: Learn the nature of duality associated with moving bodies.

CO3: Assimilate various uncertainty principles.

CO4: Understand the structure of atoms.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY541A - ANALOG AND DIGITAL ELECTRONICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course gives the students exposure to the fundamentals of solid state electronics and develops the subject to cover basic amplifiers and oscillators, On the digital side, fundamental digital arithmetic is focused on and logic gates are also introduced to enable simple computations. Units I to III caters to local and regional needs.

Learning Outcome

CO1: ● Understand the basic concepts of analog and digital electronics including semiconductor properties, operational amplifiers, logic gates, combinational and sequential logic.

CO2: ● Apply the theoretical knowledge to design electronic circuits.

CO 3: ● Solve specific theoretical and applied problems in electronics.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY541B - RENEWABLE ENERGY AND APPLICATIONS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This module makes the students familiar with the significance of Energy

resources in daily life. The important energy sources like solar photovoltaic & solar thermal

energy, wind energy, and ocean energy are discussed. Advancement in the field of fuel cells

and hydrogen as an energy source is also highlighted. Units I to III caters to regional and

national needs.

Learning Outcome

CO1: Understand the developments in Renewable energy resources (Solar, Wind and Tidal) and its significance.

CO2: Learn about the emerging developments in energy research (Fuel cells, OTEC).

CO3: Gain the basic skills needed to start entrepreneurship pertaining to local and regional needs.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY541C - ASTRONOMY AND ASTROPHYSICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description: This module introduces students to the exciting field of astrophysics. This covers the topics such as Fundamentals of Astrophysics, Astronomical Techniques, Sun and Solar System and Stellar Structure. Units I to III cater to national and global needs.

 

Learning Outcome

CO1: ● Get familiarized with the basic properties of stars such as magnitude, spectral type, flux and temperature.

CO2: ● Develop a basic understanding about various processes associated with star formation.

CO3: ● Understand how distinctly high mass stars evolve when compared to the Sun.

CO4: ● Acquire a brief overview about the formation and the expansion of the universe.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY551 - MODERN PHYSICS - I LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

The experiments related to atomic and modern physics included in this course expose the students to many fundamental experiments in physics and their detailed analysis and conclusions. This provides a strong foundation to the understanding of physics.

Learning Outcome

CO1: Understand the theory involved with the experiment

CO2: Appreciate the developments in modern physics through experiments.

CO3: Analyze the experimental data with the standard data.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY551A - ANALOG AND DIGITAL ELECTRONICS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course gives a good understanding of the functioning and applications of basic solid-state electronic devices and their circuits like amplifiers and oscillators.

Learning Outcome

CO1: ● Understand and get familiarized with assembling basic electronic building block circuits.

CO2: ● Understand the working of various analog and digital electronics devices.

CO3: ● Acquire practical skills that enable them to get employed in industries or pursue higher studies or research assignments that meet the local and national needs.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY551B - RENEWABLE ENERGY AND APPLICATIONS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This module makes the students get the practical knowledge of Energy resources & converters. The important energy sources like solar photovoltaic, thermo electric power and Fuel cells are highlighted. 

Learning Outcome

CO1: Understand the working of energy conversion devices used in renewable energy

CO2: Calculate the thermodynamic parameters (efficiency, fill factor, Gibbs free energy, entropy etc.)

CO3: Know about the latest developments and emerging trends in renewable energy devices (Fuel cells, Hydrogen generation etc.)

CO4: Apply the concepts for solving local, national and global energy problems

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY551C - ASTRONOMY AND ASTROPHYSICS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This lab module makes the students familiar with the various experiments in Astrophysics. The suits of experiments cover a broad spectrum from the color-magnitude diagram of star clusters to the study of the expansion of the universe. 

Learning Outcome

CO1: ● Analyze the spectra of stars and evaluate how the spectral lines vary for stars of various spectral types.

CO2: ● Construct the color-magnitude diagram of star clusters and understand the evolutionary phase of a star from its location in the diagram.

CO3: ● Study various distance measurement techniques and analyze the kinematics of stars.

CO4: ● Study the distance - redshift relation which was developed by Edwin Hubble to understand the expansion of the universe.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

VPHY512 - MATERIAL CHARACTERIZATION TECHNIQUES (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:0

Course Objectives/Course Description

 

Course description

The primary objective of the course is to provide students with a thorough overview of the many techniques available for the structural and microscopic characterization of various material systems. It integrates the material system applications of these characterization techniques with their scientific foundation. Three primary topics are covered in the course: spectroscopy techniques, different microscopy methods, and structural characterization.

Course Objectives

 

Upon completion of this course, the student should be able to:

Ø  Understand the scientific basis of the technique of structural characterizations.

Ø  Interpreting images of the structure of materials, diffraction patterns, spectrographs and microscopy results.

Ø  Identify potential relationships between complementary characterization techniques of materials for meeting the global and national demands in the developing science and technology.

Learning Outcome

CO1: Develop the ability to qualitatively analyze sample data obtained through XRD, XRF, and XPS techniques.

CO2: Explore the diverse applications of vibrational spectroscopy and comprehend how these techniques are employed in various scientific and industrial contexts.

CO3: Explore the applications of electron microscopy techniques in nanotechnology, material science, and other relevant fields.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE631 - CHEMISTRY VI-MOLECULES OF LIFE (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course creates awareness about the various topics in biochemistry and the students are made to realize the role of the same in the life processes. The course emphasizes on the importance of leading a healthy life and the significance of a balanced diet which is essential to maintain nutritional requirements.

 

Learning Outcome

CO1: Recall the major contributions in the development of biochemistry and significance of various biomolecules.

CO2: Examine the structure and properties of water and biomolecules in living organisms.

CO3: Predict the reactions related to carbohydrates, proteins, enzymes, nucleic acids and lipids.

CO4: Explain the concepts of energy and nutrition in biosystems.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE641A - CHEMISTRY VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course is intended to impart a deep knowledge in the fields of Industrial and Environmental Chemistry. The course emphasizes on the applications of various industrial chemicals. It gives an insight on the importance of preserving our natural resources and conserving our environment.

 

Learning Outcome

CO1: Explain the principles and concepts involved in the manufacture of industrial chemicals.

CO2: Predict the hazards involved in storage, handling and transportation of industrial chemicals.

CO3: Develops environment sensitivity and social responsibility to limit the pollution of water.

CO4: Discuss the significance of renewable energy sources and environmental protection.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE641B - CHEMISTRY VIB-CHEMISTRY OF NATURAL PRODUCTS AND HETEROCYCLIC COMPOUNDS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course deals with various topics of natural products chemistry and lays the foundation for the study of heterocyclic compounds.

Learning Outcome

CO1: Predict the structure of terpenoids, alkaloids, steroids, natural drugs, natural coloring agents and heterocyclic compounds.

CO2: Utilise the appropriate reactions in structural studies of terpenoids, alkaloids, steroids, natural drugs, natural coloring agents and heterocyclic compounds.

CO3: Discuss the chemistry and significance of natural products and heterocyclic compounds.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE651 - CHEMISTRY PRACTICALS VI-MOLECULES OF LIFE (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course introduces different biochemical techniques for the determination and analysis of various biomolecules like carbohydrates, amino acids etc.It also emphasizes the importance of organized and systematic approach in carrying out experiments.

Learning Outcome

CO1: Understand the action of salivary amylase of starch.

CO2: Analyze amino acids by paper chromatography.

CO3: Estimate absorbance of biomolecules by colorimetric method.

CO4: Determine iodine value and saponification value of oils.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE651A - CHEMISTRY PRACTICALS VIA-INDUSTRIAL MATERIALS AND ENVIRONMENT (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This practicals course deals with analysis of fertilizers, ceramic and plastic materials, estimation of ores, alloys and cement

Learning Outcome

CO1: Estimate phosphoric acid in superphosphate fertilizer.

CO2: Analyze different types of alloys.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE651B - CHEMISTRY PRACTICALS VIB-CHEMISTRY OF NATURAL PRODUCTS AND ORGANIC ANALYSIS (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

This course deals with the extraction and estimation of natural products chemistry and lays the foundation for the analysis of organic compounds. 

Learning Outcome

CO1: Explain the theory of extraction of Natural products.

CO2: Estimate Natural products and Nucleic acids by different methods.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

CHE681 - DISSERTATION IN CHEMISTRY (2021 Batch)
Total Teaching Hours for Semester:105
No of Lecture Hours/Week:7
Max Marks:100
Credits:5

Course Objectives/Course Description

 

This project-based course is intended to provide the students an opportunity to choose and learn more about any topic based on their interest, from Chemistry. This will act as a springboard for pursuing research.  This will also enhance teamwork, planning, time management and effective use of resources.

Learning Outcome

CO1: Choose various topics on which they can conduct innovative experiments.

CO2: Demonstrate teamwork, time management and initiative.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT631 - COMPLEX ANALYSIS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course description: This course enables the students to understand the basic theory and principles of complex analysis.

COBJ1.     understand the theory and geometry of complex numbers.

COBJ2.     evaluate derivatives and integrals of functions of complex variables.

COBJ3.     examine the transformation of functions of complex variables.

COBJ4.   obtain the power series expansion of a complex valued function.

Learning Outcome

CO 1: understand the concepts of limit, continuity, differentiability of complex functions.

CO 2: evaluate the integrals of complex functions using Cauchy?s Integral Theorem/Formula and related results.

CO 3: examine various types of transformation of functions of complex variables.

CO 4: demonstrate the expansions of complex functions as Taylor, Power and Laurent Series, Classify singularities and poles.

CO 5: apply the concepts of complex analysis to analyze and address real world problems.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT641A - MECHANICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course description: This course aims at introducing the basic concepts in statistics as well as dynamics of particles and rigid bodies; develop problem solving skills in mechanics through various applications.

Course objectives: This course will help the learner to

COBJ1. Gain familiarity with the concepts of force, triangular and parallelogram laws and conditions of equilibrium of forces.

COBJ2. Analyse and interpret the Lamis Lemma and the resultant of more than one force.

COBJ3. examine dynamical aspect of particles and rigid bodies.

COBJ4. illustrate the concepts of simple harmonic motion and projectiles

 

Learning Outcome

CO1: Compute resultant and direction of forces and examine the equilibrium of a force.

CO2: Apply Lamis's Theorem and Varignon's Theorem in solving problems.

CO3: Analyse the motion of a particle on a smooth surface.

CO4: Discuss the motion of a particles subjected to Simple Harmonic Motion and fundamental concepts Projectiles.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT641B - NUMERICAL METHODS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course description: To explore the complex world problems physicists, engineers, financiers and mathematicians require certain methods. These practical problems can rarely be solved analytically. Their solutions can only be approximated through numerical methods. This course deals with the theory and application of numerical approximation techniques.

 

Course objectives: This course will help the learner

COBJ1. To learn about error analysis, solution of nonlinear equations, finite differences, interpolation, numerical integration and differentiation, numerical solution of differential equations, and matrix computation.

COBJ2. It also emphasis the development of numerical algorithms to provide solutions to common problems formulated in science and engineering.

Learning Outcome

CO1: Understand floating point numbers and the role of errors and its analysis in numerical methods.

CO2: Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.

CO3: Apply numerical methods to obtain approximate solutions to mathematical problems.

CO4: Understand the accuracy, consistency, stability and convergence of numerical methods

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT641C - DISCRETE MATHEMATICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course description: It is a fundamental course in combinatorics involving set theory, permutations and combinations, generating functions, recurrence relations and lattices.

Course objectives: This course will help the learner to 

COBJ 1: Gain a familiarity with fundamental concepts of combinatorial mathematics.

COBJ 2: Understand the methods and problem solving techniques of discrete mathematics

COBJ 3: Apply knowledge to analyze and solve problems using models of discrete mathematics

Learning Outcome

CO1: Enhance research, inquiry, and analytical thinking abilities.

CO2: Apply the basics of combinatorics in analyzing problems.

CO3: Enhance problem-solving skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT641D - NUMBER THEORY (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description: This course is an introduction to elementary topics of analytical number theory. Topics such as divisibility, congruences and number-theoretic functions are discussed in this course. Some of the applications of these concepts are also included.

Course Objectives: This course will help the learner to

COBJ 1: Engage in sound mathematical thinking and reasoning.

COBJ 2: Analyze, evaluate, or solve problems for given data or information.

COBJ 3: Understand and utilize mathematical functions and empirical principles and processes.

COBJ 4: Develop critical thinking skills, communication skills, and empirical and quantitative skills.

Learning Outcome

CO1: effectively express the concepts and results of number theory.

CO2: understand the logic and methods behind the proofs in number theory.

CO3: solve challenging problems in number theory.

CO4: present specific topics and prove various ideas with mathematical rigour.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT641E - FINANCIAL MATHEMATICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

Course Description:Financial Mathematics deals with the solving of financial problems by using Mathematical methods. This course aims at introducing the basic ideas of deterministic mathematics of finance. The course focuses on imparting sound knowledge on elementary notions like simple interest, complex interest (annual and non-annual), annuities (varying and non-varying), loans and bonds.

Course objectives: This course will help the learner to

COBJ 1: gain familiarity in solving problems on Interest rates and Level Annuitiesd

COBJ 2: derive formulae for different types of varying annuities and solve its associated problems

COBJ 3: gain in depth knowledge on Loans and Bonds and hence create schedules for Loan Repayment and Bond Amortization Schedules.

Learning Outcome

CO1: On successful completion of the course, the students should be able to deal with the elementary notions like simple interest, compound interest and Annuities.

CO2: On successful completion of the course, the students should be able to solve simple problems on interest rates, annuities, varying annuities, non-annual interest rates, loans and bonds.

CO3: On successful completion of the course, the students should be able to apply the formulae appropriately in solving problems that mimics real life scenario.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651 - COMPLEX ANALYSIS USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description: This course will enable students to have hands on experience in constructing analytic functions, verifying harmonic functions, illustrating Cauchy’s integral theorem and bilinear transformations and in illustrating different types of sequences and series using Python.

Course Objectives: This course will help the learner to

COBJ 1:Python language using jupyter interface

COBJ 2:Solving basic arithmetic problems using cmath built-in commands

COBJ 3:Solving problems using cmath.

Learning Outcome

CO 1: acquire proficiency in using Python and cmath functions for processing complex numbers.

CO 2: skilful in using Python modules to implement Milne-Thompson method.

CO 3: expertise in illustrating harmonic functions and demonstrating Cauchy?s integral theorem Representation of conformal mappings using Matplotlib.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651A - MECHANICS USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description: This course aims at enabling the students to explore and study the statics and dynamics of particles in a detailed manner using Python. This course is designed with a learner-centric approach wherein the students will acquire mastery in understanding mechanics using Python.

Course objectives: This course will help the learner to

COBJ 1: Acquire skill in usage of suitable functions/packages of Python.

COBJ 2: Gain proficiency in using Python to solve problems on Mechanics.   

Learning Outcome

CO1: Acquire proficiency in using different functions of Python to study Differential Calculus. Mechanics.

CO2: Demonstrate the use of Python to understand and interpret the dynamical aspects of Python.

CO3: Use Python to evaluate the resultant of forces and check for equilibrium state of the forces.

CO4: Be familiar with the built-in functions to find moment and couple.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651B - NUMERICAL METHODS USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description: This course will help the students to have an in depth knowledge of various numerical methods required in scientific and technological applications. Students will gain hands on experience in using Python for illustrating various numerical techniques.

Course Objectives: This course will help the learner to

COBJ 1: Develop the basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems using Python.

COBJ 2: To develop the basic understanding of the applicability and limitations of the techniques.

Learning Outcome

CO1: Implement a numerical solution method in a well-designed, well-documented Python program code.

CO2: Interpret the numerical solutions that were obtained in regard to their accuracy and suitability for applications

CO3: Present and interpret numerical results in an informative way.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651C - DISCRETE MATHEMATICS USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course description: This course aims at providing hands on experience in using Python functions to illustrate the notions of combinatorics, set theory and relations.

Course objectives: This course will help the learner to

COBJ1. Gain a familiarity with programs on fundamental concepts of Combinatorial Mathematics

COBJ2. Understand and apply knowledge to solve combinatorial problems using Python

Learning Outcome

CO1: Attain sufficient skills in using Python functions

CO2: Demonstrate programming skills in solving problems related to applications of computational mathematics.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651D - NUMBER THEORY USING PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description: This course will help the students to gain hands-on experience in using Python for illustrating various number theory concepts such as the divisibility, distribution of primes, number conversions, congruences and applications of number theory.

Course Objectives: This course will help the learner to

COBJ 1: Be familiar with the built- in functions required to deal with number theoretic concepts and operations.

COBJ 2: Develop programming skills to solve various number theoretic concepts.

COBJ 3: Gain proficiency in symbolic computation using python.

Learning Outcome

CO1: to solve problems in number theory, number conversions.

CO2: to demonstrate the understanding of number theory concepts.

CO3: to model and solve practical problems using number theoretic concepts.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT651E - FINANCIAL MATHEMATICS USING EXCEL AND PYTHON (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Course Description: The course aims at providing hands on experience in using Excel/Python programming to illustrate the computation of constant/varying force of interest, continuously payable varying/non-varying annuities, increasing/decreasing annuity immediate/due, loans and bonds.

Course objectives: This course will help the learner to

COBJ 1: acquire skill in solving problems on Financial Mathematics using Python.

COBJ 2: gain proficiency in using the Python programming skills to solve problems on Financial Mathematics.

Learning Outcome

CO1: demonstrate sufficient skills in using Python programming language for solving problems on Financial Mathematics.

CO2: apply the notions on various types of interests, annuities, loans and bonds, by solving problems using Python.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

MAT681 - PROJECT ON MATHEMATICAL MODELS (2021 Batch)
Total Teaching Hours for Semester:75
No of Lecture Hours/Week:5
Max Marks:150
Credits:5

Course Objectives/Course Description

 

Course description: The course aims at providing hands on experience in analyzing practical problems by formulating the corresponding mathematical models.

Course objectives: This course will help the learner to

 COBJ1. Develop positive attitude, knowledge and competence for research in Mathematics

Learning Outcome

CO1: Demonstrate analytical skills.

CO2: Apply computational skills in Mathematics

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY631 - MODERN PHYSICS - II (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course is envisaged to provide a strong foundation of basics of modern physics.  Molecular physics, Lasers, solids, superconductivity and nuclear physics.

Learning Outcome

CO1: Develop a fundamental understanding of molecular spectroscopy vis-à-vis infrared and Raman spectroscopy.

CO2: Acquire a basic understanding about the working of LASER.

CO3: Get familiarized with the free electron theory and its application in solids.

CO4: Gain a brief overview about the nuclear structure and learn the working principles of nuclear detectors and accelerators.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY641A - SOLID STATE PHYSICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:03

Course Objectives/Course Description

 

This course is intended to make the students understand the basic concepts of solid-state physics such as geometry of crystalline state, production of X-rays and diffraction from solids.  It enables the students to explore the fundamental concepts of lattice dynamics and the various physical properties of solids. 

Learning Outcome

CO1: Understand the structures of different crystals

CO2: Correlate the X-ray diffraction patterns with the crystal structures

CO3: Apply the magnetic, dielectric and ferroelectric properties of solids for practical applications.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY641B - QUANTUM MECHANICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course is an elective paper which gives students an option to learn about additional topics in quantum mechanics. Students are introduced to the applications of time-independent and time-independent Schrodinger wave equations to bound systems such as hydrogen atom

Learning Outcome

CO1: ● Explain the development of quantum theory and its real applications in physics.

CO2: ● Appreciate the significance of Schrodinger equations in the dynamics of bound systems.

CO3: ● Illustrate the role of operators and their connection with observables, and uncertainty.

CO4: ● Acquire knowledge on spin, angular momentum states, and angular momentum addition rules

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY641C - NUCLEAR AND PARTICLE PHYSICS (2021 Batch)
Total Teaching Hours for Semester:45
No of Lecture Hours/Week:3
Max Marks:100
Credits:3

Course Objectives/Course Description

 

This course has been conceptualized in order to give students an exposure to the fundamentals of nuclear and particle physics. Students will be introduced to the new ideas such as properties and structure of nucleus, interaction of nuclear radiations with matter and the principles behind working of radiation detectors, fundamental particles and their interactions, particle accelerators. Unit II caters to regional and national needs.

Learning Outcome

CO1: ● Acquiring the knowledge of basics of nuclear physics, which enables them to use it for understanding the structure and properties of nucleus

CO2: Able to understand the nuclear interactions with matter and applications of nuclear radiations.

CO3: Able to acquire working knowledge of radiation detectors.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY651 - MODERN PHYSICS - II LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

Experiments related to molecules, solid state physics and nuclear physics included in this course provides a better understanding of the theory.

Learning Outcome

CO1: Develop better clarity of the theory through the respective experiments.

CO2: Enhance the analytical and interpretation skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY651A - SOLID STATE PHYSICS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:02

Course Objectives/Course Description

 

Experiments related to solid state physics and elementary properties provide a better understanding of the theory. 

  •  

Learning Outcome

CO1: Develop a better understanding of fundamentals of X-ray crystallography through diffraction experiments.

CO2: Enhance their analytical and interpretation skills.

CO3: Estimate the dielectric and magnetic properties of solids.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY651B - QUANTUM MECHANICS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

The objective of this module is to introduce the students to problem solving skills on various topics in quantum mechanics. 

Learning Outcome

CO1: ● Demonstrate the skills of problem solving and understand the concepts clearly.

CO2: ● Develop the ability to write programs in python language.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

PHY651C - NUCLEAR AND PARTICLE PHYSICS LAB (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:50
Credits:2

Course Objectives/Course Description

 

 

Students are expected to learn the topics such as binding energy, mass absorption coefficient for beta rays, mass attenuation coefficients for gamma rays, working of GM counter, NaI(Tl) and CdTe detectors. 

Learning Outcome

Better clarity of the theory through the respective experiments is expected. Hands on experience of working with detector spectrometers. Development of analytical and interpretation skills.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern

VPHY611 - MATHEMATICAL TOOLS IN PHYSICS (2021 Batch)
Total Teaching Hours for Semester:30
No of Lecture Hours/Week:2
Max Marks:100
Credits:0

Course Objectives/Course Description

 

This course is an introduction to some of the basic mathematical tools that is essential in understanding physics. The course will highlight topics such as trigonometry, calculus, and their applications to physical systems. The course is aimed at giving a foundation in practical use of these mathematical tools which is needed for continued higher education in physics. 

Learning Outcome

CO1: Learners will be able to understand the basic physical aspects of trigonometry and calculus.

CO2: Learners will be able to evaluate and solve real-world physical problems using these mathematical tools.

Text Books And Reference Books:
Essential Reading / Recommended Reading
Evaluation Pattern